Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
2.
Chin Med J Pulm Crit Care Med ; 2(1): 27-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38558961

RESUMO

Progressive lung fibrosis is characterised by dysregulated extracellular matrix (ECM) homeostasis. Understanding of disease pathogenesis remains limited and has prevented the development of effective treatments. While an abnormal wound healing response is strongly implicated in lung fibrosis initiation, factors that determine why fibrosis progresses rather than regular tissue repair occurs are not fully explained. Within human lung fibrosis there is evidence of altered epithelial and mesenchymal lung populations as well as cells undergoing epithelial-mesenchymal transition (EMT), a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties. This review will focus upon the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.

3.
Natl Sci Rev ; 11(5): nwad249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577674

RESUMO

Superconducting phase transitions in two dimensions lie beyond the description of the Ginzburg-Landau symmetry-breaking paradigm for three-dimensional superconductors. They are Berezinskii-Kosterlitz-Thouless (BKT) transitions of paired-electron condensate driven by the unbinding of topological excitations, i.e. vortices. The recently discovered monolayers of layered high-transition-temperature ([Formula: see text]) cuprate superconductor Bi2Sr2CaCu2O8+δ (Bi2212) meant that this 2D superconductor promised to be ideal for the study of unconventional superconductivity. But inhomogeneity posed challenges for distinguishing BKT physics from charge correlations in this material. Here, we utilize the phase sensitivity of scanning superconducting quantum interference device microscopy susceptometry to image the local magnetic response of underdoped Bi2212 from the monolayer to the bulk throughout its phase transition. The monolayer segregates into domains with independent phases at elevated temperatures below [Formula: see text]. Within a single domain, we find that the susceptibility oscillates with flux between diamagnetism and paramagnetism in a Fraunhofer-like pattern up to [Formula: see text]. The finite modulation period, as well as the broadening of the peaks when approaching [Formula: see text] from below, suggests well-defined vortices that are increasingly screened by the dissociation of vortex-antivortex plasma through a BKT transition. In the multilayers, the susceptibility oscillation differs in a small temperature regime below [Formula: see text], consistent with a dimensional crossover led by interlayer coupling. Serving as strong evidence for BKT transition in the bulk, we observe a sharp jump in phase stiffness and paramagnetism at small fields just below [Formula: see text]. These results unify the superconducting phase transitions from the monolayer to the bulk underdoped Bi2212, and can be collectively referred to as the BKT transition with interlayer coupling.

4.
Circ Genom Precis Med ; 17(2): e004397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563135

RESUMO

BACKGROUND: Basic scientists have used preclinical animal models to explore mechanisms driving human diseases for decades, resulting in thousands of publications, each supporting causative inferences. Despite substantial advances in the mechanistic construct of disease, there has been limited translation from individual studies to advances in clinical care. An integrated approach to these individual studies has the potential to improve translational success. METHODS: Using atherosclerosis as a test case, we extracted data from the 2 most common mouse models of atherosclerosis (ApoE [apolipoprotein E]-knockout and LDLR [low-density lipoprotein receptor]-knockout). We restricted analyses to manuscripts published in 2 well-established journals, Arteriosclerosis, Thrombosis, and Vascular Biology and Circulation, as of query in 2021. Predefined variables including experimental conditions, intervention, and outcomes were extracted from each publication to produce a preclinical atherosclerosis database. RESULTS: Extracted data include animal sex, diet, intervention type, and distinct plaque pathologies (size, inflammation, and lipid content). Procedures are provided to standardize data extraction, attribute interventions to specific genes, and transform the database for use with available transcriptomics software. The database integrates hundreds of genes, each directly tested in vivo for causation in a murine atherosclerosis model. The database is provided to allow the research community to perform integrated analyses that reflect the global impact of decades of atherosclerosis investigation. CONCLUSIONS: This database is provided as a resource for future interrogation of sub-data sets associated with distinct plaque pathologies, cell type, or sex. We also provide the methods and software needed to expand this data set and apply this approach to the extensive repository of peer-reviewed data utilizing preclinical models to interrogate mechanisms of diverse human diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Humanos , Animais , Aterosclerose/patologia
5.
New Phytol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634187

RESUMO

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.

6.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649376

RESUMO

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

7.
Pathogens ; 13(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38535573

RESUMO

Campylobacter species, especially C. jejuni and C. coli, are the main zoonotic bacteria causing human gastroenteritis. A variety of Campylobacter species has been reported in wild birds, posing a potential avian-human transmission pathway. Currently, there has been little surveillance data on Campylobacter carriage in migratory birds in China. In the current work, fresh fecal droppings from individual migratory birds were collected at four bird wintering/stopover sites in China from May 2020 to March 2021. Nucleic acid was extracted and tested for Campylobacter with PCR-based methods. Overall, 73.8% (329/446) of the samples were positive for Campylobacter, demonstrating location and bird host specificity. Further speciation revealed the presence of C. jejuni, C. coli, C. lari, C. volucris, and an uncharacterized species, which all harbored a variety of virulence factors. Phylogenetic analysis performed on concatenated 16S rRNA-atpA-groEL genes elucidated their genetic relationship, demonstrating both inter- and intra-species diversity. The wide distribution and high diversity of Campylobacter spp. detected in migratory birds in China indicated potential transmission across territories. The existence of virulence factors in all of these species highlighted their public health importance and the necessity of monitoring and controlling Campylobacter and other pathogens carried by migratory birds.

8.
Br J Cancer ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553589

RESUMO

BACKGROUND: Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS: A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS: We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION: We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.

10.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422022

RESUMO

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Assuntos
Linfoma de Células B , Proteínas Repressoras , Animais , Camundongos , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
11.
BMC Genomics ; 25(1): 132, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302871

RESUMO

BACKGROUND: The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS: In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS: Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/metabolismo , Filogenia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Ubiquitinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Família Multigênica
12.
Plant Cell ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262703

RESUMO

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE 1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.

13.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256188

RESUMO

Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nucleotidiltransferases , Soja/genética , Resposta ao Choque Frio , Nucleotídeos , RNA Nucleotidiltransferases
14.
Genes Dis ; 11(3): 101065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38222900

RESUMO

The factors that determine fibrosis progression or normal tissue repair are largely unknown. We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition (EMT) in human alveolar epithelial type II (ATII) cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signalling. Here, we report that liver kinase B1 (LKB1) inactivation in ATII cells inhibits autophagy and induces EMT as a consequence. In IPF lungs, this is caused by downregulation of CAB39L, a key subunit within the LKB1 complex. 3D co-cultures of ATII cells and MRC5 lung fibroblasts coupled with RNA sequencing (RNA-seq) confirmed that paracrine signalling between LKB1-depleted ATII cells and fibroblasts augmented myofibroblast differentiation. Together these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATII cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.

15.
Orthod Craniofac Res ; 27(1): 174-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985447

RESUMO

OBJECTIVE: To investigate the salivary bacterial communities during the first 6-month orthodontic treatment with Clear Aligners (CA) and Fixed Appliances (FA), and its correlation with clinical periodontal parameters. MATERIALS AND METHODS: Saliva and periodontal parameters were sampled from individuals wearing CA or FA before treatment (T0), and after 3- (T3) and 6-month (T6) treatments. Salivary bacterial communities characterized based on the 16S rRNA V3-V4 region were compared between FA and CA and correlated with clinical periodontal parameters. RESULTS: Probing Depth (PD) significantly increased at T6 in the FA group versus T0, whereas it remained stable in the CA group. The Shannon and Pielou indices were significantly higher in the FA group and significantly positively correlated with periodontal inflammation parameters. ß-diversity analysis revealed distinct communities between the FA group and CA group at T6. The relative abundances of 3 genera and 15 species were significantly higher in the FA group. Among the above appliance-type related taxa, bacterial genera Selenomonas, Stomatobaculum, Olsenella and Faecalicoccus and bacterial species Selenomonas_sputigena, Dialister_invisus, Olsenella_profus, Prevotella_buccae, Cryptobacterium_curtum and Clostridium_spiroforme were significantly positively associated with periodontal parameters. CONCLUSIONS: Orthodontic treatments trigger appliance-related salivary bacterial communities, highlighting the importance of developing appliance-orientated periodontal strategies during orthodontic treatments. Salivary bacterial communities harboured by patients wearing FA possess higher bacterial parameters which were associated with increasing PD, PI and Gingival Index.


Assuntos
Microbiota , Aparelhos Ortodônticos , Humanos , RNA Ribossômico 16S/genética , Aparelhos Ortodônticos Fixos , Saliva/microbiologia
16.
Ecotoxicol Environ Saf ; 270: 115889, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150751

RESUMO

Silica nanoparticles (SiNPs) have been widely used in electronics, chemistry, and biomedicine. Human exposure to SiNPs and possible health effects have attracted much attention. The potential cardiovascular toxicity of SiNPs and their related mechanisms are still unclear. Therefore, in this study, we investigated the toxic effects of SiNPs on human umbilical vein endothelial cells (HUVECs). We found that SiNPs could induce HUVECs ferroptosis. The results showed that the level of intracellular divalent iron and lipid peroxidation increased, and mitochondrial cristae decreased. In addition, the pretreatment of the iron chelator deferoxamine mesylate (DFO) could alleviate the ferroptosis of cells. Interestingly, pretreatment of 3-methyladenine (3-MA), an autophagy/PI3K inhibitor could partially inhibit autophagy and reduce ferroptosis, which indicated that autophagy played an important role in cell ferroptosis. Additionally, after knocking down nuclear receptor coactivator 4 (NCOA4), Ferritin Heavy Chain 1 (FTH1) expression was up-regulated, and the levels of divalent iron and lipid peroxidation decreased, which suggested that NCOA4 mediated the ferroptosis of HUVECs induced by SiNPs. In conclusion, this study shows that SiNPs can induce cardiovascular toxicity in which there is ferroptosis. NCOA4-mediated ferritinophagy and resultant ferroptosis by SiNPs may play an important role. This study provides a new theoretical strategy for the treatment and prevention of cardiovascular diseases in the future.


Assuntos
Ferroptose , Nanopartículas , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dióxido de Silício/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Nanopartículas/toxicidade , Autofagia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
17.
Mikrochim Acta ; 191(1): 52, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147136

RESUMO

Coconut cadang-cadang viroid (CCCVd) is an infectious single-stranded RNA (ssRNA) pathogen, which leads directly to the death of a large number of coconut palm trees and heavy economic loss to coconut farmers. Herein, a novel electrochemical impedance RNA genosensor is presented based on highly stable gold nanoparticles (AuNPs) decorated phosphorene (BP) nanohybrid with graphene (Gr) for highly sensitive, low-cost, and label-free detection of CCCVd. BP-AuNPs are environmentally friendly prepared by ultrasonic-assisted liquid-phase exfoliation of black phosphorus, accompanying direct reduction of chloroauric acid. Gr/BP-AuNPs are facilely prepared by the in situ growth of AuNPs onto the BP surface and its nanohybrid with Gr to improve environmental stability of BP. Gr/BP-AuNP-based RNA genosensor is fabricated by immobilizing the thiol-functionalized single-stranded DNA (ssDNA) oligonucleotide probe onto the surface of Gr/BP-AuNP-modified glassy carbon electrode via gold-thiol interactions, which served as an electrochemical genosensing platform for the label-free impedance detection of CCCVd by hybridization between the functionalized ssDNA probe and the complementary CCCVd ssRNA sequence in a wide linear range from 1.0 × 10-11 to 1.0 × 10-7 M with a low limit of detection of 2.8 × 10-12 M. This work supplies an experimental support and theoretical direction for the fabrication of RNA biosensors based on graphene-like materials and potential application for a specific diagnosis of plant RNA viral disease in Arecaceae planting industry.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro , DNA de Cadeia Simples , Compostos de Sulfidrila
18.
PLoS One ; 18(11): e0294438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983208

RESUMO

BCR-ABL tyrosine kinase inhibitors (TKIs) have dramatically improved survival in Philadelphia chromosome-positive leukemias. Newer BCR-ABL TKIs provide superior cancer outcomes but with increased risk of acute arterial thrombosis, which further increases in patients with cardiovascular comorbidities and mitigates survival benefits compared to imatinib. Recent studies implicate endothelial cell (EC) damage in this toxicity by unknown mechanisms with few side-by-side comparisons of multiple TKIs and with no available data on endothelial impact of recently approved TKIs or novels TKIs being tested in clinical trials. To characterize BCR-ABL TKI induced EC dysfunction we exposed primary human umbilical vein ECs in 2D and 3D culture to clinically relevant concentrations of seven BCR-ABL TKIs and quantified their impact on EC scratch-wound healing, viability, inflammation, and permeability mechanisms. Dasatinib, ponatinib, and nilotinib, the TKIs associated with thrombosis in patients, all significantly impaired EC wound healing, survival, and proliferation compared to imatinib, but only dasatinib and ponatinib impaired cell migration and only nilotinib enhanced EC necrosis. Dasatinib and ponatinib increased leukocyte adhesion to ECs with upregulation of adhesion molecule expression in ECs (ICAM1, VCAM1, and P-selectin) and leukocytes (PSGL1). Dasatinib increased permeability and impaired cell junctional integrity in human engineered microvessels, consistent with its unique association with pleural effusions. Of the new agents, bafetinib decreased EC viability and increased microvessel permeability while asciminib and radotinib did not impact any EC function tested. In summary, the vasculotoxic TKIs (dasatinib, ponatinib, nilotinib) cause EC toxicity but with mechanistic differences, supporting the potential need for drug-specific vasculoprotective strategies. Asciminib and radotinib do not induce EC toxicity at clinically relevant concentrations suggesting a better safety profile.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Trombose , Humanos , Mesilato de Imatinib/efeitos adversos , Dasatinibe/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/toxicidade , Células Endoteliais , Trombose/tratamento farmacológico , Proteínas de Fusão bcr-abl , Antineoplásicos/uso terapêutico
19.
Immun Inflamm Dis ; 11(11): e969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018594

RESUMO

BACKGROUND: What is highlighted in this study refers to the role and molecular mechanism of long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) in cells with insulin resistance (IR). METHODS: In this study, LX-2 cells were applied to establish IR model in vitro. The expressions of lncRNA XIST, phosphoenolpyruvate carboxykinase (PEPCK,) and glucose-6-phosphatase (G6Pase) were quantified by quantitative reverse transcription polymerase chain reaction. The 2-deoxy-d-glucose-6-phosphate (2-DG6P) level was detected utilizing 2-deoxy-d-glucose (2-DG) uptake measurement kit. Western blot was adopted to measure the protein expressions of insulin-like growth factor-1 receptor (IGF-1R), G6Pase, PEPCK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathway-related genes. StarBase was used to predict the targeting relationship between lncRNA XIST or IGF-1R with miR-182-5p, the results of which were verified by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Rescue experiments were conducted to investigate the effect of miR-182-5p on IR cells. Next, low-expressed lncRNA XIST and high-expressed miR-182-5p were observed in IR cells. RESULTS: Upregulation of lncRNA XIST increased IGF-1R and 2-DG6P levels, decreased G6Pase and PEPCK expressions, and promoted PI3K/Akt pathway activation in IR cells. LncRNA XIST sponged miR-182-5p which targeted IGF-1R. MiR-182-5p mimic reversed the above effects of lncRNA XIST overexpression on IR cells. CONCLUSIONS: In conclusion, lncRNA XIST/miR-182-5p axis alleviates hepatic IR in vitro via IGF-1R/PI3K/Akt signaling pathway, which could be the promising therapeutic target.


Assuntos
Hepatócitos , Resistência à Insulina , MicroRNAs , RNA Longo não Codificante , Humanos , Resistência à Insulina/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hepatócitos/metabolismo
20.
BMC Complement Med Ther ; 23(1): 408, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957642

RESUMO

BACKGROUND: Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS: The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS: A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION: This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.


Assuntos
Neoplasias , Plumbaginaceae , Humanos , Apigenina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...